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Abstract

Masks have been widely recommended as a precaution against COVID-19 transmission.

Several studies have shown the efficacy of masks at reducing droplet dispersion in lab set-

tings. However, during the early phases of the pandemic, the usage of masks varied widely

across countries. Using individual response data from the Imperial College London—You-

Gov personal measures survey, this study investigates the effect of mask use within a coun-

try on the spread of COVID-19. The survey shows that mask-wearing exhibits substantial

variations across countries and over time during the pandemic’s early phase. We use a

reduced form econometric model to relate population-wide variation in mask-wearing to the

growth rate of confirmed COVID-19 cases. The results indicate that mask-wearing plays an

important role in mitigating the spread of COVID-19. Widespread mask-wearing associates

with an expected 7% (95% CI: 3.94%—9.99%) decline in the growth rate of daily active

cases of COVID-19 in the country. This daily decline equates to an expected 88.5% drop in

daily active cases over 30 days compared to zero percent mask-wearing, all else held

equal. The decline in daily growth rate due to the combined effect of mask-wearing, reduced

outdoor mobility, and non-pharmaceutical interventions averages 28.1% (95% CI: 24.2%-

32%).

1. Introduction

In response to the COVID-19 pandemic, multiple countries curbed the spread of the disease

by enforcing strict policy measures such as lockdowns and shelter-in-place orders [1]. The

non-pharmaceutical interventions (NPIs) included closures of schools, restaurants, bars, retail

outlets, and other non-essential businesses, as well as shelter-in-place policies and the prohibi-

tion of large gatherings (e.g., limited to 10 people) [2]. These institutional measures aimed to

reduce the exposure of susceptible individuals to symptomatic and asymptomatic infected

individuals by decreasing outdoor mobility (e.g., going out to movies, concerts, and
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restaurants, and assembling in large groups) and encouraging social distancing (e.g., 1m-2m

physical distancing) [3, 4].

Unlike the widespread and proactive implementation of lockdowns and physical distancing

measures, the usage of masks varied widely across countries. Some countries quickly adopted

guidelines for mask usage (e.g., Malaysia, Singapore, Taiwan, and Thailand), while others did

not recommend using face masks unless sick [5–7]. Indeed, the World Health Organization

only updated its mask-wearing guidelines on June 5, 2020 [8], to recommend that “The general

public should wear non-medical masks where there is widespread transmission and when

physical distancing is difficult, such as on public transport, in shops or other confined or

crowded environments”. Due to these changing guidelines and uneven implementations,

mask-wearing varied dramatically across countries and over time during the early phases of

the pandemic [9].

Multiple studies have investigated the impact of various governmental NPIs [3, 10–13] that

encourage physical distancing and other restrictions. In each case, the studies find that NPIs

and physical distancing reduce the transmission of COVID-19. Studies on the effectiveness of

face masks [14–16] also show that face masks could contribute to the mitigation of COVID-19.

However, a recent study [17] uses a randomized control trial to investigate the effect of masks.

The authors find that infection with SARS-CoV-2 occurred in 1.8% of the participants in the

treated group (recommended masks for three hours per day) versus 2.1% of the participants in

the control group. A difference of about 17% over 60 days appears statistically insignificant.

Despite this conclusion, as noted by [18], the trial in [17] points to “a likely benefit of mask-

wearing to the wearer—it did not examine the wider potential benefit of the reduced spread of

infection to others—and this even in a population where mask-wearing isn’t mandatory and

prevalence of infection is low.” In another cluster-randomized trial study [19] conducted in

rural Bangladesh, an increase from 13.3% mask-wearing in the control group to 42.3% in the

treatment group over five to nine weeks resulted in an 11.6% point reduction in individuals

with COVID-19-like symptoms. In addition, the interventions, government policies, individ-

ual measures, and exposures to infection due to outdoor mobility seldom act in isolation.

Treating these measures in isolation could lead to under- or over-estimation of their effective-

ness at reducing the spread of the disease, biasing the assessments of the measure’s impact.

This study fills these gaps by investigating the association of population-wide mask-wearing

with the number of COVID-19 cases concurrent with other individual and institutional

measures.

In sum, because mask-wearing varied dramatically in early 2020, we restrict this study to

examine the mitigating role that mask-wearing played during the early phases of the pandemic.

Specifically, we expand on the current stream of research by simultaneously considering the

effects of NPIs and outdoor mobility in combination with a population’s reported usage of

face masks in public places in a reduced-form econometric model (see examples in [3] and

[10]). Using data from 24 countries, we identify the effect of each measure by exploiting the

country-wise differences in (1) the percentage of the population who report wearing a face

mask in public places (YouGov Survey Data [9]), (2) outdoor mobility across multiple catego-

ries such as Parks and Transit Locations (using Google Mobility Reports [20]) and (3) the NPI

implementations (using CoronaNet-Project [1]). The results re-affirm the importance of

mask-wearing in combating the spread of COVID-19.

2. Methods

This study is a cross-sectional analysis of the effects of personal and governmental measures

across 24 countries on mitigating COVID-19 disease spread. The data used in this study were
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collected from February 21, 2020 to July 8, 2020, representing 139 days of data for each coun-

try. All analysis presented in this paper uses publicly available data. Subsequently, we present

the data on the three measures, namely, mask-wearing, outdoor mobility, and NPIs, and then

discuss the model-based analysis.

Key variables of interest

Mask-wearing. We study the impact of mask-wearing behavior using survey data across

multiple countries released by the Institute of Global Health Innovation (IGHI) at Imperial

College London and YouGov [9]. The survey covers 25 countries and Hong Kong (as of July 8,

2020), with around 21,000 people interviewed each week. Further details about the survey

design can be found in S1 Text. We restrict our analysis to 24 countries because China and

Hong Kong do not have publicly available data on outdoor mobility, which we control for in

this study. The data present global insights on people’s reported behavior in response to

COVID-19. The dataset provides the percentage of the population in each country who report

wearing a mask in public places. Because these surveys were conducted at an interval of several

days, we interpolate (linearly) to estimate the percentage of the population that would wear

masks in public spaces for days when the data are unavailable (Fig 1). We use the significant

variation of mask-wearing across countries to measure the association of people reporting

mask-wearing to the spread of COVID-19.

Outdoor mobility. Google Community Mobility Reports provide data on relative mobil-

ity changes with respect to an internal baseline across multiple categories, namely, retail and

recreation, groceries and pharmacies, parks, transit stations, workplaces, and residential (Fig

2). Table B in S1 Text shows the summary of the community mobility. Apart from the Google

Mobility reports, we also utilize mobility data from Apple to test the robustness of the model

Fig 1. Percentage of people who say they are wearing a face mask in public spaces.

https://doi.org/10.1371/journal.pgph.0000954.g001
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Fig 2. Outdoor mobility from Google Mobility Reports and Apple Mobility Reports for Italy. Outdoor mobility for all 24

countries is shown in Fig H in S1 Text.

https://doi.org/10.1371/journal.pgph.0000954.g002
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to different measures of mobility. We note that neither Google nor Apple provide absolute

mobility measures, but rather present relative changes to benchmarks they use internally.

Finally, drops in mobility could be driven by both individual actions (e.g., cautious behavior)

and institutional actions due to NPIs enacted by governments. To control for mobility declines

due to institutional actions, we also include country-specific interventions enacted both

nationally and provincially.

Non-pharmaceutical interventions. Governments across the 24 countries enforced dif-

ferent policies to control the spread of COVID-19. Prior research has shown that these policies

played a significant role in reducing the human to human physical contact and led to a slow-

down in the spread of the disease. However, these policies were implemented at different lev-

els, some nationally, some provincially. We use data from the COVID-19 Government

Response Event Dataset [1] to control for government policies in estimating the effect of

masks. Fig J in S1 Text lists the types and counts of national and provincial government poli-

cies implemented across the 24 countries we consider in this study. The dataset contains 5,816

entries on policies at the national and provincial levels. Finally, the inclusion of these interven-

tions helps control for some of the observed drops in mobility that are not necessarily associ-

ated with individual actions but with the presence of institutional policies. S1 Text includes the

detailed information about the interventions.

Covariates

Because the data span multiple countries and weeks, we include time and country fixed effects

in the model. The model controls for country-level heterogeneity using fixed-effects, where the

variable for a country assumes a value of one if the data considered are specific to that country

and zero otherwise. This variable allows for control of country-level characteristics that are not

in the model and helps reduce the errors due to omitted variables in our analysis. In addition

to country-level differences, we also control for time-based differences (e.g., people are more

aware and cautious over time) by incorporating time-fixed effects, where the variable Weekt
takes a value of one if the data are from week ‘t’ (where t = 1 represents the first week for a

given country in the data). In addition, we control for each country’s testing capability (Fig

3A) by accounting for the country’s total number of daily tests. Finally, we also control for peo-

ple’s actions to educate themselves by including the Google Trends (Fig 3B) data for the search

term ‘coronavirus’.

Outcome variable

Data for the number of active daily cases in each country were obtained from the Johns Hop-

kins University School of Public Health [21]. We use a seven-day moving average of cumula-

tive confirmed cases and cumulative recovered cases to compute daily active cases and daily

growth rates. The daily growth rate is the ratio of active infections today to active infections

the day before. The dataset aggregates this information across multiple national, state, and

local health departments within each country. The daily growth rate is then related to the inde-

pendent variables described earlier through a reduced-form econometric model. We describe

the derivation in detail (Section S1Text). We illustrate the daily cases and growth rate for one

country, Italy, in Fig 4.

Analysis

We use a reduced form econometrics model to relate the growth rate of daily active infections

to the independent variables described earlier. Similar models have been used by [3] to deter-

mine the effect of anti-contagion policies on the spread of COVID-19. In brief, the model
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Fig 3. Number of COVID-19 tests (per thousand people) and Google Trends for Italy. Data for all 24 countries is shown in Figs M and N in

S1 Text, respectively.

https://doi.org/10.1371/journal.pgph.0000954.g003
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Fig 4. Daily active cases and growth rate of active cases for Italy. The vertical green line in Fig 4B shows the start of data collection for Italy. The

vertical red line in Fig 4B shows the end of 60 days of data collection for Italy. Data for all 24 countries are shown in Figs F and G in S1 Text,

respectively.

https://doi.org/10.1371/journal.pgph.0000954.g004
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assumes that the daily growth rate (ratio of active infections today to active infections the day

before) is affected by institutional measures such as NPIs and individual measures such as out-

door mobility and mask-wearing. The covariates listed above help control for other factors

that could affect growth over time. The method also has roots in compartmental epidemiology

models—SIR (Susceptible, Infectious, Recovered). Because the epidemiological parameters for

new diseases such as COVID-19 might not be well understood, reduced form techniques allow

for the estimation of the impact of governmental and personal measures to help contain the

spread of the virus. To filter out the high variation in growth rates when the number of cases is

very low at the beginning of the pandemic, our model for each country initializes when a coun-

try reaches 20% of peak new cases, as observed by July 8, 2020. For robustness, we also test

other starting times in the Supplements and find results in line with the ones presented here.

SIR growth rate model. Eqs 1–4 describe the SIR model where Sj,t, Ij,t, and Rj,t show the

active susceptible, infectious, and recovered population at time t in country j. βj is the rate of

transmission and γj is the rate of recovery in country j. Since we do not consider reinfection

and deaths, γj can be considered as the rate of removal from infectious population. Nj is the

total population of the country j. Eq 1 shows how infections spread from the infectious indi-

viduals to susceptible individuals. Eq 2 shows how the infectious population changes over time

as some susceptible individuals contract the disease while some already infectious individuals

recover from the disease and test negative. Eq 3 shows how the number of recovered individu-

als increase over time as individuals recover after testing negative for the virus. Eq 4 is a feasi-

bility constraint which ensures that the total population is accounted for in the model.

Addition of Eqs 1–3 yields Eq 4.

dSj;t
dt
¼ �

bjIj;tSj;t
Nj

ð1Þ

dIj;t
dt
¼
bjIj;tSj;t
Nj

� gjIj;t ð2Þ

dRj;t

dt
¼ gjIj;t ð3Þ

dSj;t
dt
þ

dIj;t
dt
þ

dRj;t

dt
¼ 0 ð4Þ

Since we model only the growth rate in the total confirmed cases, we consider Eq 2 in our

analysis. Assuming Sj,t�Nj (at the early stages of the pandemic), we can solve Eq 2 by integra-

tion. Details of analysis are provided in the S1 Text. If we consider daily growth rate (t2−t1 =

1), the growth rate model can be simplified as shown in Eq 5, where gj is the growth rate and it

is given by βj−γj.

logðIj;t2Þ � logðIj;t1Þ ¼ gj ¼ bj � gj ð5Þ

Wearing face masks, reducing social mobility, and the implementing of NPIs can alter the

growth rate by changing gj. Eq 6 represents the growth rate model (P is the set of policies; M is

the set of indicators of social mobility, W is the set of weeks for the duration of our analysis,

and J is the set of countries in our analysis). mobilityj,t,m is the mth indicator for social mobility,

weekj,t,w = 1 if day t in country j is in week w after the initialization point for country j. The

starting point of analysis for each country could vary as explained earlier. �t is the gaussian

error term in Eq 6. The rest of variables are as described earlier (and with more detail in the S1
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Text).

gj;tþshift ¼ y0 þ yc:maskj;t þ
X

p2P

yppolicyj;t;p þ
X

m2M

ymmobilityj;t;m þ ye:testingj;t þ
X

w2W

ywweekj;t;w

þ yr:trendj;t þ
X

j2J

yjcountryj þ �t ð6Þ

The econometrics approach of using the growth rate to estimate the effects of masks, social

mobility, and NPIs has several advantages. The model can estimate the effect of the exogenous

independent variables on the dependent outcome variable (growth rate). Since the left-hand

side of Eq 5 can be empirically calculated, it does not explicitly require the knowledge of the

relationship between exogenous variables and Ij,t. Thus, the model does not need to know the

link between masks, NPIs, and social mobility on daily active cases (or cumulative confirmed

cases) but can still estimate their effect on the growth rate of infectious cases. Using the growth

rate, Ij,t can be estimated by integrating it from time 0 (or using previous integration up to the

day t−1). Thus, this model is forward-looking. The S1 Text also provide further details about

the methodological approach and model formulation used in this paper.

We provide some brief notes on the operationalization of the independent variables and the

model initialization below:

1. The growth rate model is able to handle underreporting in COVID-19. In the COVID-19

pandemic, data for an individual is recorded when only they are tested. Total confirmed

cases (deaths and recovered cases) in publicly available datasets only provide information

on the individuals who got themselves tested. Due to various reasons, e.g., lack of testing,

lack of motivation to get tested, or lack of visible symptoms in asymptomatic cases, it is

being estimated that there is a massive underreporting in total confirmed positive cases.

However, the growth rate model is agnostic to underreporting as it models the first differ-

ence in the log of confirmed cases. If the underreporting is a constant proportion of the

reported cases, we can multiply Ij,t and Ij,t−1 with a constant factor, and it would not affect

our estimation of growth rate (Eq 5).

2. Responses to the survey about mask-wearing are subject to biases. For example, individuals

might overestimate the efficacy of their mask or their wearing pattern. To alleviate some of

these concerns, we compute the natural log of the mask-wearing variable to discount its

impact on the growth rate of daily active cases. This transformation yields a curve that

grows at a slower rate as the values of mask-wearing increase, thereby diminishing the

impact of higher levels of mask-wearing. We also test for other functional forms (square-

root and linear) and present those results (Table G in S1 Text).

3. Due to the high correlation across the different mobility data categories obtained from

Google, we only include the categories of Mobility: Parks and Mobility: Transit Stations in

the model. Because we are interested in determining the impact of mobility in general,

these two mobility variables suffice in capturing the individual’s movement patterns during

this time. In S1 Text, we present results including other mobility types and also run the

model with Apple Mobility data in place of Google Mobility Reports.

4. The CoronaNet dataset from [1] collected information on all the government policies intro-

duced by different countries across the world. They categorized the policies into 19 different

policy types. We use their categorization in the model. From February 21, 2020 to July 8,

2020, we check if a policy p was implemented in a country j on the day t. If the policy was

implemented, we assign a value of 1 to sj,t,p, where s represents the level of policy coverage.

If the policy was introduced at a provincial level, we normalize sj,t,p by the population of the
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state. Because several policies were introduced simultaneously or close together, they suf-

fered from collinearity issues. To minimize multicollinearity issues, we choose only a spe-

cific set of policies to include in the analysis; S1 Text discusses this selection mechanism.

5. Due to the uncertainty of the lag in COVID-19 incidences and the difficulties in detection

during the early days of the disease [22, 23], similar to prior research, we tested the focal

model across multiple lag periods (shift) from zero to 14 days and for different initialization

thresholds (th) for each country (0% to 20% of a country’s peak daily cases by July 08,

2020). We chose the best shift and th values using a k-fold cross-validation process (k = 5).

The chosen model had the highest maximum likelihood estimate of the data and the lowest

prediction error. We discuss this procedure (Section S1 Text). The results presented in the

next section correspond to a model with a shift of nine days and a th of 20% of peak new

cases by July 08, 2020. Finally, we train the model on 1,422 daily case observations across 24

countries. These observations span from the day each country’s daily cases reached 20% of

its peak to July 08, 2020. We restrict our analysis to the first 60 days after model initializa-

tion based on th. However, we test the robustness of the findings for other lengths of data.

This allows for greater variation in mask usage within the data.

In the next section, we describe our results and their policy implications.

3. Results

The results indicate that individual measures such as mask-wearing and outdoor mobility

combined with institutional measures (NPIs) play a role in mitigating the spread of COVID-

19. Fig 5 shows the estimates from the focal reduced-form model for these measures and their

corresponding confidence intervals. The full table of results, along with results for all robust-

ness checks, are provided in S1 Text. We first list the results of the key measures we consider

and then discuss their implications.

Mask-wearing

The model finds that reported mask wearing of 100% associates with an average 7% (95% CI:

3.94%—9.99%) drop in the daily growth rate of COVID-19 cases. While this daily effect

appears small, 100% reported mask-wearing leads to approximately 88.5% (95% CI: 68.7%—

89.2%) decline in active cases over 30 days compared to the situation where 0% of the people

report wearing masks (all else remaining the same across the two scenarios). Modifying the

functional form of the mask variable did not appreciably change the association. For example,

in the linear model, masks are associated with an average 8.69% (95% CI: 5.63%—11.66%)

drop in daily growth rate, and for the square root model, the expected daily drop in growth

rate was 7.89% (95% CI: 4.81%—10.87%). The stability of the results indicates that mask-wear-

ing plays a significant role in mitigating the spread of the disease. Fig 5 also illustrates that

widespread mask-wearing, as an intervention by itself, has the most significant association (by

magnitude) with the growth rate of active COVID-19 cases. Fig 6 plots the ratio of active cases

under different proportions of respondents who claim to wear masks against no mask-wearing

and for various periods.

Mobility and NPIs

As expected, the model finds that a rise in mobility links with a rise in the number of cases.

Specifically, the selected mobility variables associate with a combined 8.1% (95% CI: 5.6% -

10.6%) drop in daily case numbers. Similarly, we find that the implementation of NPIs is also

associated with a drop in daily growth rates across countries. After accounting for mobility
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declines, the NPI measures ‘Quarantine’, ‘External Border Restrictions’, and ‘Closure and Reg-

ulation of Schools’ link with the highest declines in the growth rate of daily active cases. Over-

all, all NPIs included in the model led to a decrease in the growth rate of COVID-19. This

finding confirms multiple studies that investigated the effects of NPIs on limiting the spread of

COVID-19 [10, 13, 23, 24]. Overall, we find that if the NPIs were enacted uniformly across the

whole country, then the combined association of the NPIs with the decline of growth in daily

cases of COVID-19 would average 13% (95% CI: 9.2% - 16.2%). We determine the combined

effect using the Krinsky-Robb method, a Monte Carlo simulation used to draw samples from a

multivariate normal distribution. S1 Text provides more details on this method.

Controlling for endogeneity using control functions

Due to nearly concurrent enactments and blanket coverage of policies and precautionary

behaviors within countries, the individual (e.g., masks, limiting mobility) and institutional

(NPIs) measures correlate in time. This precludes the causal identification of each measure’s

effect on disease mitigation. In other words, because mask-wearing, mobility reductions, and

NPIs occur at similar times, their effects are intertwined and difficult to determine separately.

Fig 5. Parameter estimates for the growth rate model. The blue dot indicates the point estimates and the horizontal

lines indicate a 95% confidence interval around the estimate (Masks transformed as ln(1+mask)). Results for different

transformations of Mask and other covariates are shown in Fig Q in S1 Text.

https://doi.org/10.1371/journal.pgph.0000954.g005
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For some variables, such as mobility and NPIs, we lack the necessary data to fully control for

these issues. In the case of mask-wearing, even though we cannot eliminate all the possible

endogeneity issues, we attempt to alleviate some of the concerns of confounding variables by

employing control functions [25]. As noted in [26], control functions make the intervention

exogenous in a regression equation. To create a control function, we use mortality data for

prior outbreaks of SARS, H1N1, and MERS in each country as instrumental variables to predict

the proportion of mask-wearing in each country (see S1 Text for more details). We posit that

exposure to prior pandemics would have resulted in a more aware populace that could be ame-

nable to precautionary behaviors such as mask-wearing. Next, we compute the control func-

tion by determining the predicted mask-wearing residuals (computed via determining

“Predicted Mask-Wearing minus Reported Mask-Wearing”), allowing for better identification

of the effect of reported mask-wearing on COVID-19 case numbers.

Using this procedure, we find that if 100% of the population claimed to wear masks, then

mask-wearing relates to an average 4.95% (95% CI: 2.26%—7.53%) drop in the daily growth

rate of COVID-19, when compared to zero percent reported mask-wearing. Over 30 days, this

translates to a 70.4% (95% CI: 62.3%—72.7%) drop in new COVID-19 cases. While we are

careful to note that this estimate could still be affected by confounding variables, this result

lends stronger support to the magnitude of the disease mitigation that mask-wearing in the

general population provides. In summary, widespread mask-wearing leads to a significant

decline in the spread of COVID-19.

Robustness checks

To help determine the accuracy and stability of the results, we run several robustness checks

(see S1 Text for details):

1. We vary the lag period (shift) from 0 to 14 days. The results show that the estimates of the

individual and institutional measures are relatively stable.

Fig 6. The ratio of active cases under different percentages of mask-wearing in public spaces as compared to 0% mask-wearing over different periods (in

days). The shaded bars represent in ratio while the black vertical lines represent the 25th and 75th percentile of the ratio (from simulations using the Krinsky-

Robb method).

https://doi.org/10.1371/journal.pgph.0000954.g006
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2. We also vary the length of time we consider in the analysis. The model considered 60 days

of data for each country. We vary this to estimate the model on 35, 45, 55, 65, 75, and 85

days of data and find that the results remain stable to these variations.

3. We replace Google mobility data with Apple mobility data. The model estimates remain

robust to this change.

4. We vary the functional form of how mask-wearing relates to the spread of COVID-19. The

results are not statistically different in these cases.

5. We also test the robustness of the analysis by modifying the data using exponential smooth-

ing. Specifically, for any day t, the focal model in Eq (1) ignores the value of the indepen-

dent variables from days t-shift+1 to t (discussed in Fig A in S1 Text). In the model we use

for the robustness check, we do not ignore values between t-shift and t and use exponential

smoothing to average the intervening data. Finally, we also modify the interpolation

method of mask-wearing data from linear (current) to quadratic. We find that the results

are stable with all these modifications.

The S1 Text detail all the robustness checks and simulations as well as their results.

4. Discussion

Over the past few months, several studies have investigated the efficacy of masks at mini-

mizing droplet dispersion [27, 28] and the potential consequences of their use [14, 29] in

the general population. Although a randomized control trial on the efficacy of face mask

usage appears to indicate inconclusive results in the general population [15–17] provide evi-

dence for the benefits of face mask usage through a systematic review of the multiple obser-

vational studies and the evidence thus far. While the type of face mask, as well as the timing

and length of use, can affect its efficacy, its use as a precautionary principle has been

strongly advised [30]. Despite the abundant scholarly and some anecdotal evidence [31],

face mask use in some countries like Sweden and the United States remains controversial

[32–34]. Additionally, as observed in the data, even in countries where masks do not face

similar headwinds and as support for mask usage gathers further evidence, face mask use is

not as commonplace (e.g., Denmark, Norway, Sweden, Finland), even as a precautionary

principle.

This study links the growth rate in active cases of COVID-19 in a country to a population’s

reported wearing of face masks in public places over time. The model also includes other mea-

sures that could simultaneously impact the spread of the disease as face mask usage changes

over time. After accounting for these measures and controlling for other covariates, the results

indicate that reported face mask use is associated with a decline in the growth of COVID-19.

More precisely, if 100% of the population claimed to wear masks, then mask-wearing is associ-

ated with an average 7% decline in the growth of daily active cases of COVID-19. This associa-

tion persists across multiple robustness checks and model formulations. A decline of 7%

corresponds to an 88.5% drop in the number of active cases 30 days later. Together with the

other measures (mobility changes, NPIs), the combined association of individual and institu-

tional measures on the decline in the growth rate of daily active cases of COVID-19 is 28.1%

(95% CI: 24.2%-32%).

Limitations

Countries enacted multiple NPIs simultaneously. This precludes us from identifying the effec-

tiveness of NPIs separately. Second, the mobility data provided by Google and Apple are only
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indicative of the relative changes from a benchmark, so their association with disease spread

should be interpreted with precaution. Third, we rely on the accuracy of data collected by

third parties like YouGov. Inconsistencies in testing, reporting, and recording the data could

lead to errors in the results obtained. Additionally, mask types and mask-wearing patterns

could vary across countries, individuals, and over time. Finally, individuals might wear masks

incorrectly, might wear less effective masks, or might misreport their mask-wearing behavior.

For example, using data across the US and Canada, [35] show that mask-wearing differs based

on negative attitudes toward SARSCoV2 vaccination, beliefs that the threat of COVID-19 has

been exaggerated, disregard for social distancing, and political conservatism. Cultural collec-

tivism has also been shown to have a significant effect on mask usage. For example, [36] show

that collective interdependence and state-level differences in collectivism were good predictors

of mask usage. Similarly, using data from all US states, 27 countries and from [37] also find

that culturally collectivistic regions are more likely to wear masks. These differences and limi-

tations affect the validity of all COVID-19 population-based mask-efficacy studies.

5. Conclusions

The population-wide usage of face masks as a preventative measure against the transmission of

COVID-19 varies widely across countries. Using data from 24 countries, this study finds that

face mask usage associates with a decline in the growth rate of daily active cases of COVID-19.

Over a 30-day period, mask-wearing associates with an 88.5% decline in the number of daily

active cases. This result re-affirms the prominent importance of masks in combating the

spread of COVID-19.
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